

Diffusion Method Transfer Guide from Microette to Phoenix™ System

Application Note: H-AN-008

Introduction

Diffusion or permeation testing measures the release or permeation rate of an active pharmaceutical ingredient (API) diffuse from the semisolid preparation; it is very good quality control tool to measure the critical performance data of semisolid formulation. Diffusion testing using diffusion cells has become the industry standard due to the pioneering work of Dr. T. J. Franz who developed the "Franz cell." Franz Cells are a widely used methodology to evaluate in vitro drug permeation or in vitro drug release. This device consists of a small-volume, water-jacketed cell (receptor compartment) and donor compartment that contains a chamber for drug application, a membrane to be placed between donor and receptor compartment, through which the drug may diffuse into the receptor chamber, and from receptor chamber samples may be extracted at a desired time point and analyzed for drug release. Later developments include non-water-jacketed, dry-heat cells such as Teledyne Hanson's Phoenix™ line of diffusion testers.

A traditional diffusion testing system typically has a group of six cells for simultaneous testing of six specimens. A magnetic cell drive controls the mixing of each cell receptor chamber throughout the test, and a circulating bath provides heated water to the jacketed cells to maintain a constant temperature. With innovation in our newer systems the receptor media is heated directly to achieve precise temperature, also known as a dry-heat cell. Samples are taken from the receptor chamber, and the same amount of media is then replaced to maintain a constant media-membrane interface.

Sampling of the receptor medium can be performed manually or automatically. Teledyne Hanson's manual diffusion testing systems consist of six cells, a cell drive, a speed control, and a manual sampling syringe. The analyst removes samples using the syringe and replaces the medium after each sample is removed. The automated system provides automated sampling, collection, and media replace.

Background

Historically Teledyne Hanson manufactured and sold the Microette Diffusion system. Recent new requirements from industry and regulators have inspired Teledyne Hanson to redesign the diffusion system. In efforts to do this a non-water

Figure 1: Image of discontinued Microette diffusion system and current Phoenix RDS

jacketed, dry heat system, compliant with 21 CFR part 11 has been developed. This system maintains data integrity and keeps track records of all activities occurred using the system usage.

As it is well known that when the process or critical part of analytical methodology gets changed, the analytical methods required to be evaluated thoroughly for assessing the impact of changes on the product quality, and if needed method requires to be revalidated or verified per guidance provided by regulatory agencies and / or The United States Pharmacopeia. With the introduction of new Phoenix system, the same approach is required for users who are using the Microette system upgrading to the newly developed Phoenix system. There are many guidance documents available for users regarding method transfer. In this document a general approach is suggested on how to proceed with method transfer from an older system (Microette) to new system (Phoenix).

Procedure

This is to be done with Method Transfer procedure¹. This starts with evaluation of parameters changed when changing the apparatus. The duration of the test (test length), HPLC test parameters and the orifice size of donor chamber and dosing amount shall not be changed. List the main factors affected by the change such as Cell Volume, stirring speed etc. Also evaluate the analytical test procedure of HPLC for LOD/LOQ/ injection volume, linearity because the sample concentration in the receptor chamber may change. Cell Volume and orifice size difference for the Microette and Phoenix system are listed in table 1 below.

System	Cell Volume, mL	Orifice Size, mm
Vision Microette Diffusion	4	9
	7	15
	10	15
Phoenix Diffusion Manual DB-6 and Robotic Diffusion System	10	9 and 11.3
	14	
	16	11.3 and 15
	22	
	21	
	31	15 and 20

Table 1: Difference in cell volume and orifice size.

Microette		Phoenix Diffusion Platform			
Orifice Size, mm	Cell Volume, mL	Orifice Size, mm	Cell Volume, mL	Mixer Height, mm	*Multipy Injection volume factgor for Phoenix System
15	7	15	16	30	2.3
		15	22	13	3.1
		15	21	30	3.0
		15	31	13	4.4
15	12	15	16	30	1.3
		15	22	13	1.8
		15	21	30	2.5
		15	31	13	2.6

Table 2: Injection volume factor based on the cell volume.

Most common factor affecting Diffusion is the orifice size. Method transfer is easier if the orifice size isn't changed. In addition, a change to the volume may impact solubility and sink condition. Normally the amount of Active Pharmaceutical Ingredient (API) available in the donor compartment is significantly higher than the concentration of API obtained in receptor chamber at the end of the diffusion test. However, this factor should also be evaluated in pre-transfer evaluation study.

The HPLC Analytical procedure should not be changed except for the injection volume. Evaluate the HPLC test procedure for changes to the Limit of Detection (LOD) and Limit of Quantitation (LOQ). If the orifice size for the new system remains unchanged, then only the injection volume should be changed based on the cell volume. The recommended Injection volume factor based on the cell volume is listed in table 2 below. For example, if an injection volume is 25 μ L using a Microette system, then increase the injection volume by multiplying 25 μ L with factor provided in the table below and injected to nearest full microliter possible volume.

²If increasing injection volume is not possible then need to perform entire method validation^{2,3}.

Comparative Testing

The study objective of a procedure comparison is to demonstrate that a new procedure performs equivalent to, or better than, an old procedure. Based on initial examination of test procedure, a comparative test for method verification⁴ using one batch of product on both instruments 3 times, and data analysis should be performed to access the impact of change. A risk based evaluation of the changes should be done and evaluated against the draft guidance provided by FDA under "Comparability Protocols for Human Drugs and Biologics: Chemistry, Manufacturing, and Controls Information Guidance for Industry, April 2016 document⁵.

Such analysis shall be conducted based on a preapproved study protocol that stipulates the details of the procedure, the samples that will be used, and the predetermined acceptance criteria, including acceptable variability. Meeting the predetermined acceptance criteria is necessary to assure that the method is adequately suitable to perform the test on a new instrument. It is often necessary to compare two analytical procedures to determine if differences in accuracy and precision are less than an amount deemed practically important. A change in a procedure includes a change in technology, a change in laboratory or a change in the reference standard in the procedure. Procedures with differences less than the practically important criterion are said to be equivalent or better. Perform the comparison based on SUPAC SS guidance⁶ for product similarity, and if it meets the requirements, the new system can be easily used for future testing.

Study Report

When the study is successfully completed, a report that describes the results obtained in relation to the acceptance criteria, along with conclusions with confirmation that the new instrument is qualified to run the procedure. Any deviations should be thoroughly documented and justified. If the acceptance criteria are met, the study is successful, and the new instrument is qualified to run the procedure, otherwise, the procedure cannot be considered transferred until effective remedial steps are adopted to meet the acceptance criteria. An investigation may provide guidance about the nature and extent of the remedial steps, which include training and clarification to more complex approaches, or revalidation depending on the procedure.

References

1. The United States of Pharmacopeia, general chapter <1224>, Transfer of Analytical Procedures
2. The United States of Pharmacopeia, general chapter <1225>, Validation of Compendial Procedures
3. The FDA guidance for Analytical Procedures and Method Validation for Drugs and Biologics, July 2015
4. The United States of Pharmacopeia, general chapter <1226>, Verification of Compendial Procedures
5. The FDA guidance on comparability protocols for Human Drugs and Biologics: Chemistry, Manufacturing and Controls information, April 2016
6. The FDA guidance on SUPAC SS: Nonsterile Semisolid Dosage Forms; Scale-Up and Post-Approval Changes: Chemistry, Manufacturing and Controls; In Vitro Release Testing and In Vivo Bioequivalence Documentation, May 1997

Note: This document is prepared as a general guidance, the users must contact the regulatory agency to confirm the approach regarding method transfer from an older system to a new system to decide and act accordingly.