thermoscientific

APPLICATION NOTE 43205

Determination of ultratrace elements in semiconductor grade sulfuric acid using the Thermo Scientific iCAP RQ ICP-MS

Authors

Tomoko Vincent, Christoph Wehe Thermo Fisher Scientific, Bremen, Germany

Keywords

CCT, cold plasma, KED, semiconductor, sulfuric acid

Goal

To develop a method for the ultratrace determination of metals in semiconductor grade sulfuric acid using the Thermo Scientific iCAP[™] RQ[™] ICP-MS.

Introduction

Concentrated sulfuric acid (H_2SO_4) is used in the semiconductor industry to remove organic substances from the surface of silicon wafers. Since H_2SO_4 comes into contact with wafer surfaces, it is necessary to monitor its trace elemental impurities.

High sulfur matrices are problematic in ICP-MS analysis due to the formation of spectral interferences that are preferentially created due to their low ionization energies in the ICP ion source. The most challenging elements in the trace determination of sulfuric acid are Ti, V, Cr, Zn and Ge. All major isotopes of these metals are severely interfered by polyatomic species generated by the sample matrix (Table 1).

Table 1. Typical target isotopes with commonly observed interferences.

Isotope	Abundance	Matrix-Based Interferences
⁴⁷ Ti	7.3%	${}^{33}S^{14}N^+$, ${}^{32}S^{15}N^+$, ${}^{32}S^{14}N^1H^+$
⁴⁸ Ti	73.8%	³² S ¹⁶ O ⁺
⁵¹ V	100%	${}^{33}S^{18}O^{+}, {}^{34}S^{16}O^{1}H^{+}, {}^{32}S^{18}O^{1}H^{+}$
⁵² Cr	83.8%	³⁴ S ¹⁸ O ⁺ , ³³ S ¹⁸ O ¹ H ⁺
⁵³ Cr	9.5%	³⁴ S ¹⁸ O ¹ H ⁺
⁶⁴ Zn	48.6%	³² S ₂ ⁺ , ³² S ¹⁶ O ₂ ⁺
⁶⁶ Zn	27.9%	${}^{32}S^{34}S^+\!, {}^{33}S_2^-\!, {}^{34}S^{16}O_2^-\!, {}^{36}S^{16}O^{14}N^+$
⁶⁸ Zn	18.8%	³⁴ S ₂ ⁺ , ³² S ³⁶ S ⁺ , ³⁴ S ¹⁶ O ¹⁸ O ⁺
⁷² Ge	27.7%	⁴⁰ Ar ³² S+
⁷⁴ Ge	35.5%	⁴⁰ Ar ³⁴ S ⁺

Sample Preparation

Pre-cleaned PFA bottles were used for the preparation of all blanks, standards and samples. Concentrated H_2SO_4 (98% Optima grade H_2SO_4 , from Fisher Chemical) was 10-fold diluted with ultrapure water before analysis. Standards at concentrations of 10, 25, 50 and 100 ng·L¹ were prepared gravimetrically by adding the appropriate quantity of a multielemental SPEX CertiPrepTM stock. 9.8% H_2SO_4 was used for the rinse and blank solutions. Spike tests were performed at 10 ng·L¹.

Method

The instrument configuration and operation parameters are shown in Table 2. Please note, the Thermo Scientific[™] iCAP[™] RQ ICP-MS was not installed in a clean room.

Table 2. Instrument configuration and operation parameters.

Parameter	Value	
Spraychamber	Quartz, cyclonic	
Nebulizer	MicroFlow PFA-100 (self-aspirating)	
Injector	2.0 mm I.D., Sapphire	
Interface	Cold plasma platinum sampler and high sensitivity platinum skimmer	
Extraction Lens System	Cold plasma	

Mode	RF Power	QCell Technique	
CP	580 W	-	
CP-NH ₃	580 W	1% NH ₃ in He, 7.0 mL·min ⁻¹	
CCT-Cluster	1550 W	50% NH ₃ in He, 0.8 mL·min ⁻¹	
CCT-NH ₃	1550 W	1% NH ₃ in He, 10.0 mL·min ⁻¹	
KED-He	1550 W	100% He, 5.0 mL·min-1	
KED-NH ₃	1550 W	1% NH ₃ in He, 4.0 mL·min ⁻¹	

Results

Table 3 shows the performance of the analysis of 9.8% $\rm H_2SO_4$ with the iCAP RQ ICP-MS:

- Excellent semiconductor level LoD and BEC were produced for all analytes through a combination of different measurement modes.
- Outstanding performance was achieved for V, Cr, Zn and Ge indicating the effective suppression of all matrix induced interferences (Figure 1 for V).
- CCT-Cluster mode (50% NH₃ in He) effectively shifts the target analyte to an interference free region enabling ultratrace Ti quantification (Figure 2).
- Accurate spike recoveries from 92% to 108% were obtained for 26 elements at 10 ng·L⁻¹.
- Cold plasma is suitable for the analysis of mineral acid samples such as 9.8% sulfuric acid.

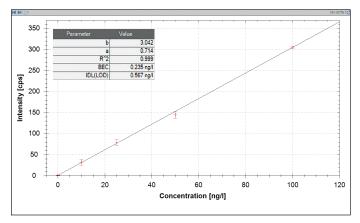


Figure 1. Calibration curve for ⁵¹V in 9.8% H₂SO₄.

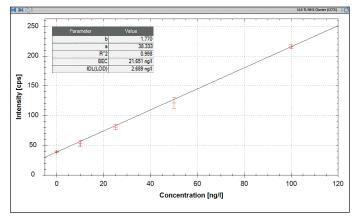


Figure 2. Calibration curve for ⁴⁸Ti¹⁴N¹H(¹⁴N¹H₂)₃⁺ in 9.8% H₂SO₄.

Table 3. Thermo Scientific iCAP RQ ICP-MS performance for the
analysis of 9.8% H_2SO_4 .

Analyte	Mode	LoD (ng∙L⁻¹)	BEC (ng∙L⁻¹)	Recovery (%)
⁷ Li	CP	0.3	0.9	99
²³ Na	CP	0.7	2.6	107
²⁴ Mg	CP-NH ₃	0.9	0.8	102
²⁷ AI	CP	0.9	1.1	99
³⁹ K	CP	2.2	8.5	102
⁴⁰ Ca	CP	5.9	17.0	103
⁴⁸ TiNH(NH ₃) ₃	CCT-Cluster	2.7	21.7	97
⁵¹ V	CCT-NH ₃	0.6	0.2	100
⁵³ Cr	CP-NH ₃	2.7	1.7	103
⁵⁵ Mn	CP	0.3	0.2	102
⁵⁶ Fe	CP	1.0	1.8	100
⁵⁸ Ni	CP	1.5	2.1	98
⁵⁹ Co	CP	0.3	0.1	99
⁶⁵ Cu	CP	1.9	1.1	103
⁶⁸ Zn	KED-NH ₃	0.5	2.9	99
⁷¹ Ga	CP	0.1	0.1	101
⁷⁴ Ge	KED-NH ₃	0.7	0.1	108
⁸⁵ Rb	KED-NH ₃	1.0	0.8	100
⁸⁸ Sr	KED-NH ₃	0.5	0.6	105
¹¹¹ Cd	KED-He	1.2	0.4	107
¹¹⁵ ln	KED-He	0.3	0.5	107
¹³⁸ Ba	KED-NH ₃	1.1	0.1	96
²⁰⁵ TI	KED-He	0.6	0.5	92
²⁰⁸ Pb	KED-He	1.5	1.4	97
²⁰⁹ Bi	KED-He	0.5	3.1	98
²³⁸ U	KED-He	0.4	0.4	101

Conclusion

The Thermo Scientific iCAP RQ ICP-MS provides excellent performance for the ultratrace determination of metals in semiconductor grade H₂SO₄. The flexible combination of different analysis modes has been shown to be ideally suited for the ultratrace metal determination in advanced semiconductor applications.

Find out more at thermofisher.com/SQ-ICP-MS

©2017 Thermo Fisher Scientific Inc. All rights reserved. SPEX CertiPrep is a trademark of MSI Holdings, LLC. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **AN43205-EN 0817**

